YK 004.92

DOI: 10.32347/0131-579%.2021.100.215-228
PhD, associate professor Tregubova I.A.,
pisma-irine@ukr.net, ORCID 0000-0003-2030-7678
itnekOpi@gmail.com, student Hryhorashchenko V.O.

State University of Intellectual Technologies and Communications, Odessa

IMPLICATION THE CROSS-PLATFORM LOVEZ2D ENGINE FOR
RENDERING AND ARTIFICIAL INTELLEGENCE DEVELOPMENT

Recently, the market for consoles and mobile games is growing, and
therefore to find a game engine that meets the demanding requirements of users
IS not an easy task. Technology platforms have become clear favorites of many
developers. However, the market is volatile, and therefore the question of
choosing a game engine will not lose its relevance in the near future and is the
first, main, relevant and important subject of choice in this work. The relevance
of this article is to write an original algorithm for 2D computer game, taking into
account the latest intelligent technologies, which will be different from previous
versions by its uniqueness: a new procedural generation, improved artificial
intelligence of characters, original game mechanics, which necessitated the
creation of a key to unlock levels.

To work on this task, the open cross-platform LOVE2D engine and the
Lua programming language a powerful, efficient and easy to learn language
were substantiated. The reason for choosing the LOVE2D game engine is that
its technology is unique in itself. Simple text was used in the development of the
game algorithm. A significant number of issues were resolved in unique way
from scratch while developing.

Original positions of game mechanics are created such as unlocking the
end of the level, the infinity of the game and focusing on the maximum "Score",
increasing the size of each subsequent level, compared to the previous one,
improved artificial intelligence of characters are the main differences from
existing approaches used to create previous Super Mario Bros projects. The
reason that makes this project more advanced and a little more random than the
original game: it's a procedural level generation. Since the game is infinite it's
really important to keep levels random and different.

The obtained results made it possible to say that the work done is a new
step forward in comparison with previous developments of algorithms for this
2D game. The original algorithm and code for 2D computer game, using the
capabilities of modern information technologies, can be useful not only for
creating mobile games, but also for solving virtual reality, augmented reality,
TV presentation, visualization effects of the hologram.

215

mailto:pisma-irine@ukr.net

The project presented in the paper is made exclusively for the purpose of
implementation in the educational process.

Keywords: cross-platform engine; programming language; procedural
generation; algorithm, program code; rendering; artificial intelligence.

Problem statement. Every year more and more computer games are
improved thanks to the fruitful work of professionals on the creation of 2D and
3D games.

The urgency of the problem lies in the fact that the created algorithm
corresponds to the latest achievements of computer science and makes the game
original, interesting and exciting for users. To do this, it was necessary to create
a new original generation, improve the artificial intelligence of the heroes to
facilitate the possibility of passing the levels.

Analysis of recent research and publications. In 1961, at the
Massachusetts University of Technology, programmers at one of the mainframes
created and launched the world's first prototype of a computer game. It was
given the name Space War. The essence of the game was that two spacecraft
plowed the open spaces of the monitors, and tried to hit each other with shells.
The world’s first computer game was made in the arcade genre.

Computer games went to the people 10 years after the events described
above. The name of the arcade genre was born in 1971. Entrepreneur Nolan
Bushnell invented and launched the first commercial arcade game. Both the
principle and the plot remained the same as with Star Wars, but the apparatus on
which all this was reproduced changed. It was an affordable simple iron box
with a monitor that vaguely resembled modern slot machines.

The arcade genre prevailed for several years in a row, but in the mid-
seventies the first adventure game was released, which was called Adventure.
Further, in 1976 the first computer game console with one game was released, a
year later — an analogue, but with several games.

At the beginning of the 80s of the last century, there was a boom in the
release of game consoles.

From that moment on, everything was given exclusively to time. It went
on, computers became more powerful, and games were brighter and more
functional.

Having spread rapidly, virtual computer games have become an integral
part of modern culture. Having become an element of the everyday life of
thousands and millions of mainly young people around the world, they have
formed new subcultures. Virtual games form new traditions and behavioral
skills that change the structure of society.

Highlighting previously unresolved parts of a common problem. For the
first time for a 2D computer game Super Mario Bros, the cross-platform Love
2D engine and the Lua programming language were chosen as the most rational
option. At the same time, the positive and negative aspects of the most popular

216

2D and 3D game engines were considered and analyzed. As a result of the
analysis, the above-mentioned game engine was selected for this case.

Objective. The aim was to write own original algorithm for the 2D
computer game Super Mario Bros, which differs from previous versions by its
uniqueness: a new procedural generation, improved artificial intelligence of
characters, original game mechanics, which necessitated the creation of a key to
unlock levels.

Presentation of the main material. To choose of an appropriate game
engine and programming language for the Super Mario Bros game, an analysis
was made of the positive and negative sides of a certain number of 2D and 3D
graphics game engines, on which the gaming industry is usually based.

As a result of the analysis of the positive and negative aspects of game
engines, the 2D game engine LOVE 2D was chosen as the most rational for the
chosen game. Programming languages for creating games are now more and
more in demand and developed.

Programming language Lua was chosen to work in an article on the
creation of the game.

LOVE is a great, completely free, simple 2D game engine. LOVE (or
Love2D) is an open-source cross-platform engine for developing 2D computer
games. Designed in C++, it uses Lua as a programming language. Free 2D game
engine LOVE is a wonderful framework that is convenient to use for creating
2D games in Lua. It works on Windows, Mac OS X, Linux, Android and iOS.
To make a one-time customization of any game, Love2D(LOVE), has been used
for commercial projects, game plugs, prototypes, and everything in between.
When writing a game using LOVE, the most important parts of the API are the
following callbacks:

love.load,

love.update,

love.draw

love.graphics.

Love.update is used to control the state of the game from frame to frame,
and love.draw is used to display the state of the game on the screen. LOVE
creates its function with the same name as the callback calls. The primary
responsibility for the love.graphics module is the drawing of lines, shapes, text,
images and other drawable objects onto the screen. Its secondary responsibilities
include loading external files (including images and fonts) into memory,
creating specialized objects (such as Particle Systems or Canvases) and
managing screen geometry.

Obvious cons are that it’s not visual and the set-up iS not very user
friendly. Other point is that it doesn’t feature physics system, the high-definition
rendering, shaders system, particle systems, and so on, but it is redundant in this
particular case.

What’s good about it as it encourages the programmer to go out to learn
and think how to implement those features, and it gives programmer the

217

https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Cross-platform_software
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Programming_language

boundaries that were met by many classical retro games creators except for the
obvious performance and memory usage boundaries. That is why the authors
show how much hard work was put into modern game engines and teach how to
overcome those problems.

Lua is used for all sorts of applications, from games to web applications
and image processing. It supports procedural programming, object-oriented
programming, functional programming, data-driven programming, and data
description.

Lua combines simple procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics. Lua is
dynamically typed, runs by interpreting bytecode with a register-based virtual
machine, and has automatic memory management with incremental garbage
collection, making it ideal for configuration, scripting, and rapid prototyping.

Lua has a deserved reputation for performance. Lua as the fastest
language in the realm of interpreted scripting languages. It’s fast not only in
fine-tuned benchmark programs, but in real life too. Substantial fractions of
large applications have been written in Lua. Lua also makes it easy to extend
programs written in other languages. Lua has been used to extend programs
written not only in C and C ++, but also in Java, C #, Smalltalk, Fortran, Ada,
Erlang, and even other scripting languages such as Perl and Ruby.

Why Lua was a choice for beginning with programming in Gamedev:

Well documented: reference manual, book, wiki, 6-page quick reference
and more.

A friendly and enthusiastic community. Thanks to excellent
documentation, wiki, mailing list, and StackOverflow [1], authors had no
problem finding answers to questions.

Clean and simple syntax suitable for beginners and accessible to non-
programmers. Lua borrowed much of its control syntax from Modula, a
descendant of Pascal, which was widely used in education as an introductory
language.

Built-in interpreter: just run Lua from the command line.

An incremental garbage collector with low latency, no additional memory
overhead, little implementation complexity, and support for weak tables.

Assigning a value to nil removes the element from the table. This is
consistent with returning nil for a non-existent element, so it doesn't matter if the
element does not exist or exists with a nil value. a = {b = nil} produces an empty
table. This makes it easy to destroy game objects in Lua.

Indeed, Love2d is a very lightweight and powerful game engine. Most
suitable game engine for retro games, such as the ones that the authors used to
develop their game development skills

Things that are just different in Lua

Tables and strings are indexed from 1 rather than 0, “not”, “or”, “and”
keywords used for logical operators, there are no a+=1, a+, or similar shorthand
forms.

218

https://www.lua.org/uses.html

One of the challenges that the authors had to face is that Lua doesn’t have
classes, therefore the object-orientation is implemented using tables and
functions; inheritance is implemented using the meta-table mechanism. But for
clarity, the following GitHub [2] utilities were used, called hump by Matthias
Richter [3] for solving different issues such as input control, and class.lua [4] to
add classes to lua.

Along the journey in the gamedev the authors also stumbled upon a
problem when trying to set a virtual resolution on the screen and authors decided
to use package by Ulysse Ramage [5] to make it more manageable.

Whilst LOVE2D has its own solutions for Timer and creating events, the
authors turned to a “knife” package [6].

Procedural generation. "Mario Level-Maker" Algorithm pictured on
figure 1.1 has the following steps of execution:

Variables initialization for storing info and cache reference about
generated objects and to keep track of whether specific objects were placed once
(such as pole and key block object).

Starts iterating through x coordinate up to the current width of the level
(this parameter changes exponentially depending on the current level player is
on).

Checking specified conditions to place objects (e.g. where to place
emptiness, flat surfaces, gaps, jump blocks, bushes, key-block, end level pole).

When iteration has ended, returns cached generated objects to have access
to then work with them outside of the level generation script.

Also of note is the reason that makes this project a little more advanced
than the original game: it's a procedural level generation. Once again, this is a
bunch of if / else statements that put objects on the stage following some simple
/ or not so big rules. This makes the developed project a little more random:

Usually, procedural generation is a combination of if/else conditions and
randomizing. Since the game is infinite it's really important to keep levels
random and different. Below is the little simplified version of the actual
algorithm that is used in this project for procedural generation of the levels.

The article demonstrates the ease of use of the basics LOVE2D using an
example developed by the authors of the Mario project.

Love 2D makes it easy to set variables and core parameters before
rendering first frame in function love.load()

219

LevelMaker
function

Instantlate a
parameters for
topers and random
tileset choosmg

Instantiate empty
variables for tiles,
entities and objects

Instantiate variables for
key block spawning

/ " Instantiate vanables for pole

spawning such as pole color
and Boolean for knowing that
the pole has spawned

Level Is spawned,
return spawned

End entities, objects

f poke isnot
yet placed

and map

for x=1 to
level width

General end-
level pole

ifyisin
range

Spawn
emptiness

¥
General a flat surface
without gaps for the
player to spawn on

if x=1, 2

General gapsin
the level

General pillars
inthe level

If key-block is

General ground
of the level

General a ||Generate one ofthe | | Generate a
bush other ‘jump-blocks” | | key block

[

Fig. 1.1 Procedural generation algorithm’s flow-chart

220

function love.load()
love.graphics.setDefaultFilter('nearest’, 'nearest’)
love.graphics.setFont(gFonts['medium'])
love.window.setTitle('Super 50 Bros - Nek@pi edition')

In this snippet, a default filter has been set. A font has been set to be used
for a variable that was previously defined before it contains the path to the “.tff”
file, and the title of the window has been set to "Super 50 Bros — NekOpi
edition™.

So called nearest neighbor which allows to gain following effect as
pictured in figures 1.2 and figure 1.3.

Fig. 1.2 Pixel-art graphical filter for nearest neighbor not applied

o

B 0

Fig. 1.3 Pixel-art graphical filter for nearest neighbor applied

As a default — love2d applies an Anisotropic Filtering to smooth out the
sprites.

Lua combines simple procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics. Lua is

221

dynamically typed, runs by interpreting bytecode with a register-based virtual
machine, and has automatic memory management with incremental garbage
collection, making it ideal for configuration, scripting, and rapid prototyping.

The following shows that a push packet was used to set a virtual size of
the screen, turn on Vsync and make the windows be resizable.

push:setupScreen(VIRTUAL_WIDTH,VIRTUAL_HEI
GHT,WINDOW_WIDTH,WINDOW_HEIGHT, {

fullscreen = false,

vsync = true,

resizable = true

})

Also, the love.resize () function was used for the push
package to work.

function love.resize(w, h)
push:resize(w, h)
end

Next, Love2d provides a function to draw something on the screen every
frame - love.draw().

For example, to see how the text is displayed on the screen, it’s necessary
to take this code from the main screen:

-- Setting the font to use
love.graphics.setFont(gFonts['title'])
-- Setting the color to black to draw a shadow
love.graphics.setColor(@, 0, 0, 255)
-- Using love.graphics.printf to render Text, which is
placed on the center of the screen
love.graphics.printf('Super 50 Bros.', 1,
VIRTUAL_HEIGHT / 2 - 40 + 1, VIRTUAL_WIDTH, 'center')
-- Setting the color to white to draw text
love.graphics.setColor(255, 255, 255, 255)

To see what each line does, it’s recommended to refer to the comments in
the code.

Now that the rendering is complete, it’s apparent how the controls for the
character are created.

In this regard, if no physics engine is involved, the programmer will have
to come up with his own way to establish the laws of physics and define what a
collision is. The authors created the Player class, which contains functions for
checking collisions, and also implemented various states for the player to jump /
fall / walk and idle.

222

The code is too big to attach as a picture. But here's a small snippet of
code from the Walk Player state to get an idea of what's going on there.

If not love.keyboard.isDown('left') and not love.keyboard.isDown(‘right’)

then

-- changes the player state to idle

self.player:changeState('idle")

else

-- sets codinates of left and right bottom tiles

local tileBottomLeft =
self.player.map:pointToTile(self.player.x + 1, self.player.y
self.player.height)

local tileBottomRight =
self.player.map:pointToTile(self.player.x + self.player.width
1,

+

self.player.y + self.player.height)

-- temporarily shift player down a pixel to test
for game objects beneath
self.player.y = self.player.y + 1

local collidedObjects =
self.player:checkObjectCollisions()

self.player.y = self.player.y - 1

To see what each line does, it’s recommended to refer to the comments in
the code.

State control was used for the Al system as it maintains order and makes
the code easy to read. Consider an example with a snail as the main enemy in
the Mario project.

When talking about artificial intelligence in games, it usually means some
if / else condition that makes enemies / NPCs behave in a certain way. The Al of
the enemies in the original Super Mario game was not surprising, so an attempt
was made to do something similar in spirit and the following was implemented:

All together there are 3 states: Chasing state, Idle State and Moving state.

Idle and moving states are there to imitate random walking of enemies to
make them look more alive.

Chasing state is there to check conditions to know when to start moving
towards the Player’s Main Character.

The code is pretty big, attaching snippets to get some idea of how it all
works.

function SnailChasingState:update(dt)
self.snail.currentAnimation:update(dt)

223

-- calculate difference between snail and player on X axis
-- and only chase if <= 5 tiles
local diffX = math.abs(self.player.x - self.snail.x)

if diffX > 5 * TILE_SIZE then
self.snail:changeState('moving')
elseif self.player.x < self.snail.x then
self.snail.direction = 'left'
self.snail.x = self.snail.x - SNAIL_MOVE_SPEED* dt
-- * stop the snail if there's a missing tile on the floor
to the left or a solid tile directly left

local tilelLeft =
self.tilemap:pointToTile(self.snail.x, self.snail.y)

local tileBottomLeft =
self.tilemap:pointToTile(self.snail.x, self.snail.y
self.snail.height)

if (tileLeft and tileBottomLeft) and

(tileLeft:collidable() or not tileBottomLeft:collidable()) then
self.snail.x = self.snail.x + SNAIL_MOVE_SPEED
* dt
end
-- * If in range of player stop
elseif self.player.x - 2 < self.snail.x and
self.player.x + 2 > self.snail.x then
self.snail.x = self.snail.x

else

self.snail.direction = 'right’

self.snail.x = self.snail.x + SNAIL MOVE_SPEED* dt
end

end

Identification of "gaps" has also been implemented so that snails do not
fall into them, chasing the player.

-- stop the snail if there's a missing tile on the floor
to the right or a solid tile directly right

local tileRight =
self.tilemap:pointToTile(self.snail.x + self.snail.width,
self.snail.y)

local tileBottomRight =
self.tilemap:pointToTile(self.snail.x + self.snail.width,

self.snail.y + self.snail.height)
if (tileRight and tileBottomRight) and (tileRight:

collidable() or not tileBottomRight:collidable()) then
self.snail.x = self.snail.x - SNAIL_MOVE_SPEED* dt

224

end

Please refer to figure 1.4 to see what issues where addressed by
implementing the above code.

o

dot&h' l’

O =] o
e vy v v)

(O] * . . Is sl
et p * gt gt » * » * > gt gt gt ¢

- » * * - LR
* et . * at ot & * . * = * at at at a* |

Fig 1.4 Gaps that were problematic for virtual enemies

Please refer to Figure 1.5 to see a good example of poor implementation
of rules which can potentially lead to blocking the player from completing the
game.

Fig 1.5 Issues with procedural generation

After getting acquainted with some of the details of the implementation of
the main functions of the Mario project, it should be noted that this project is
made exclusively for educational purposes. All sprites and art for the game were
taken from following resource and are protected under Creative Commons
License [7].

Conclusions and offers. The article reviews and analyzes the most
popular game engines. Their positive and negative sides are considered. The
practical experience of their application is described in detail, which will allow
the developer to find an engine that suits his goals.

The choice of the cross-platform LOVE2D engine for creating Super
Mario Bros as a simple, free, open-source engine is reasoned. The positive

225

aspects are highlighted, the obvious disadvantages are indicated. The choice of
the Lua programming language as a powerful, efficient, easy-to-learn scripting
language is justified.

The article contains algorithm, code snippets, shows drawing functions,
provides an opportunity to see how controls for a character are created. An
attempt was made to create their own original condition for the behavior of
characters in a certain way, that is, to create their artificial intelligence.

The authors created the Player class, which contains functions for
checking collisions, and also implemented various states for the player to jump /
fall / walk and idle.

Identification of "gaps" has also been implemented so that virtual enemies
do not fall into them while chasing main character.

Also of note is the reason that makes this project a little more advanced
than the original game: it's a procedural level generation. Artificial intelligence
of enemies are the main differences from existing approaches used to create
previous Super Mario projects.

The article demonstrates the ease of use of the basics LOVE2D using an
example developed by the authors of the Mario project.

The obtained results made it possible to say that the work done is a new
step forward in comparison with previous developments of algorithms for this
2D game.

The project presented in the paper is made exclusively for educational
purposes.

References

1. Question and answer site for professional and enthusiast programmers.
https://stackoverflow.com/
2. GitHub - code hosting platform for version control and collaboration.

https://github.com/

3. Helper Utilities for a Multitude of Problems — Hump.
https://hump.readthedocs.io/en/latest/

4. Class.lua for making Love2d object oriented.

https://github.com/jonstoler/class.lua

5. Simple resolution-handling library. https://github.com/Ulydev/push

6. A collection of useful micro-modules for Lua.
https://github.com/tst2005fork/lua-knife

7. A simple 2D pixel art style art for the game.
https://opengameart.org/content/kenney-16x16.

226

https://opengameart.org/content/kenney-16x16

K.T.H., To1ieHT Tperyoosa L. A.
pisma-irine@ukr.net, ORCID 0000-0003-2030-7678,
itnekOpi@gmail.com, ctynent I'puropamenko B.O.,

Jlep>kaBHUM YHIBEPCUTET 1HTEJICKTYyaJIbHUX TEXHOJIOTIH 1 3B’ SI3KY,
M. Oneca

BUKOPUCTAHHSA KPOC-IIVIAT®@OPMHOI'O PYIIIA LOVE2D JIJIA
PEHAEPHUHI'A TA PO3POBKH HITYYHOI'O IHTEJIEKTY

OcmaHnHim yacom 3pocmae puHoK KOHCOJeU i MOOIIbHUX [20p, a mMoMy
SHAUMU i2posuil pyulii, wo 8i0nosioac 8ubA2IUBUM BUMO2AM KOPUCHYBAYIE —
ye He npocma 3adaua. Texwonociuni niamgopmu cmaiu O04eBUOHUMU
gasopumamu 6azamvox po3pooHuxie. Illpome, puHoxk MiHAUGUU, A MOMY
NUMAHHS 8UOOPY 12P0B020 DYWL C8OEI AKMYATbHOCMI HAUOIUNCUUM YACOM He
empamums i € nepuiuM, OCHOBHUM, AKMYAIbHUM MA 6A20MUM NPEOMemoM
subopy 6 Oauuiu pooomi. AxkmyanvHicmio pobomu 0y10 HANUCAHHA BIACHO20
OPURIHANILHO20 ancopummy 0 2D komn tomepuoi epu, AKUil IOPI3HAEMbCS Bi0
nonepeoHix 6epciil CB0EH VHIKAILHICMIO. HOB0I0 NpOYedypHOIO 2eHepayicro,
VOOCKOHANEHUM WIYYHUM [HMENEeKMOM NEPCOHANCIE, OPULIHANLHOIO MEXAHIKOIO
2puU, WO BUKIUKALO HEOOXIOHICMb CMBOPEeHHs Koua Ol PO3010KYB8AHHSL
MOIACIUBOCIEU NPOXOOHCEHHS PIGHIB.

Il pobomu 6Oyau 0OIpyHmMoBano 00paui Kpoc-niameopmenuit pyulii
LOVE2D 3 giokpumum xo0om ma mosa npocpamyeanHs Lua, sk nomydicHa,
ehexmusna ma nezka 015 3ac80€nHs mosa. Ilpu po3podyi arcopummy epu 6y8
BUKOpUCMAHUL NPOCMULl MeKCMm. 3HA4YHA KiIbKICmb NUMAHb 0Y10 GUPIULEHO
VHIKATbHUM WIAXOM 3 HYAs nio dac po3pooku. CmeopeHi opiciHanbHi no3uyii
MexXaHiKu 2pu maxi, sIK po30JIOKY8AHHS KiHYs Pi6Hs, HEeCKIHUeHHICMb 2pu ma
opieHmayis Ha Habip MakcumaibHoeo “‘Score’, 30iNbUEeHHS 8EIUUUHU KOHCHO2O
HACMYNHO20 PIBHS, 8 NOPIBHAHHI 3 NONEPEeOHIM, YOOCKOHANEHHS UWMYYHO2O
inmenekmy nepcoHadxcie.Bce ye € oCHOBHUMU GIOMIHHOCMAMU 610 8Jice
iCHYIOUUX Ni0X00i8, SKI BUKOPUCMOBYBANUCH OJISl CMBOPEHHS NONEPeoHix
npoexkmie Super Mario Bros. Ilpuuuna, sxa pobums yeti npoexm Oinbu
APOCYHYMUM | MPOXU OLTbU 6UNAOKOBUM, HINC OPULIHATILHA 2pa.: Ye NPoyedypHa
eenepayis pienie. OCKiIbKU 2pa HeCKIHUeHHA, Oyice 8adiCIU6o, wjob pieHi Oyiu
BUNAOKOBUMU | PIZHUMLU.

Ompumani pezyromamu O0anu MONCIUBICMb 2080pUMU NPO me, WO
BUKOHAHA poboma A615€ coO0I0 HOBULL KPOK 8neped 8 NOPIGHAHHI 3 NONEpeOHiMU
po3podkamu areopummie 0o oawoi 2D epu. Pospobneni asmopamu cmammi
OPULTHATILHULL anleopumm ma Koo 0ns 2D komn romepHoi epu, 3 UKOPUCMAHHAM
MOJCIUBOCMEU CYUACHUX — [HQOPMAYIUHUX — MEXHONO02Il, MOddCYmb Oymu
KOPUCHUMU He MITbKU OJIs CMBOPEHHsL MOOIIbHUX 120p, A U NpU 8UPIULEHHT 3a0aYy
BIPMYANbHOI pPeanbHOCMi, OONOMINCHOI peanbHOCmi, 6 MOJICIUBOCHISX
menenpe0Cmasierts, npu CMEOpeHHi eisyanizayii, eghekmis eanrocpammu, sKi

227

mailto:pisma-irine@ukr.net
mailto:itnek0pi@gmail.com

O0y0yms peanizo8yeamucs 6 mepedcax n’simo2o noxoainua. Ilpeocmaeénenuti y
pobomi npoekm 3poONeHUll BUKIIOYHO Ol OCBIMHIX yineu 3 Memoio
BNPOBAONCEHHS 8 HABYAILHUL NPOYeEC.

Knrwouosi cnosa: xpoc-niamgopmuuii pywiiii; mMoéa Npocpamy8amHs,
npoYeoypHa 2enepayis,; arcopumm, K00 NPOSPaAMy8aHHs, WMYYHULL IHmMeleKm

228

