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PARQUETS BASED ON A FRACTAL EXTENSION OF A REGULAR
PENTAGON

Consider the development of a dodecahedron - a regular polyhedron, the
surface of which consists of twelve regular pentagons. Let’s represent the
deployment of the dodecahedron in the form of two groups of polygons,
consisting of 6 regular pentagons, one of which is located in the center of the
group, while the others are adjacent to its sides. However, the most remarkable
thing is that each group of 6 regular pentagons forms a figure that inscribes into
a regular pentagon. It follows that each group of 6 regular pentagons can be
considered as the result of a fractal expansion of the regular pentagon located
In its center. Moreover, if we attach the same figure to each side of the figure
into which a group of 6 regular pentagons inscribes, we will get another figure
similar to the original regular pentagon. Repeat the previous steps infinitely
many times and get a figure similar to a regular pentagon and completely filling
the plane.

For the first time, a fractal extension of a regular pentagon was applied to
the tiling of a plane, the gaps of which are eliminated by figures that are
combinations of a rhombus with angles of 36 °and 144 °, a rhombus with angles
of 72 °and 108 ¢ and a regular five-pointed star with an angle of 36 © It is shown
that the variety of polygons used to eliminate gaps provides parquets in the form
of a fractal extension of a regular pentagon with a higher artistic value
compared to parquets constructed by means of a fractal extension of a square. It
Is presented a parquet variant, in which gaps between regular pentagons,
formed after the first iteration, are filled with rhombuses with angles of 36 °and
144° 1t is shown that the figures that fill the gaps that appear after each
iteration are similar to a rhombus with angles of 36 “and 144 , and the parquet
obtained after the fourth iteration and truncated by a regular pentagon is
similar to a figure consisting of four rhombuses with angles of 72 °and 108 °and
one regular five-pointed star with an angle of 36 °and inscribed in a regular
pentagon. Additionally, parquet variants are presented, in which the gaps
between regular pentagons, formed after the first iteration, are filled with the
corners of regular five-pointed stars with an angle of 36 °at the top.

Key Words: mosaics, parquets of rhombuses and regular five-pointed
stars, fractal extension of a regular pentagon.
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Formulation of the problem. Why do some things seem beautiful to us
and others not so much? We will not talk about all the fine arts, but we can
definitely say about ornaments that they are beautiful, because they are law-
governed. Indeed, the ornaments of all times and peoples are excellent visual
aids for the study of all the laws of symmetry known to us. What kind of
symmetry we do not meet in ornaments created by artists and artisans of Ancient
Egypt and Ancient Persia, Ancient Greece and Byzantium, Ancient India and
Ancient China! We read in the intricacies of lines and geometric figures the
symmetry of reflection, the symmetry of rotation and the symmetry of transfer.
In addition, we see in ancient ornaments not only special cases of symmetry,
such as central symmetry, but also combinations of symmetry generated by
reflections, rotations and translations, such as sliding symmetry. Of course, the
unknown masters of antiquity did not hear and did not know in spirit about such
tricky concepts as symmetry and plane transformations, but this did not prevent
them from creating works of art that outlived them for centuries and millennia.
Meanwhile, combinations of symmetry generated by reflections and rotations, as
well as transfers, are still the subject of research in various fields of art and
natural science today. For example, symmetry is widely used as one of the
techniques for constructing borders - flat figures that have one or more
translation symmetries in combination with reflection symmetries. Therefore,
despite the fact that a person’s passion for decorating household items with
patterns arose in ancient times, the study of the laws of symmetry and the
creation of new types of ornament on their basis still remains an urgent
challenge for both geometers and designers who have devoted themselves to
ornamental art.

Analysis of recent research and publications. At the same time, it
should be noted that the foundations of the theory of symmetry were laid only a
few decades ago thanks to the works of E. S. Fedorov (1853-1919), Hermann
Weyl (1885-1955), A. V. Shubnikov (1887-1970), N. V. Belov (1891-1982),
Harold Coxeter (1907—2003) and other prominent scientists of the 20th century
[1-5]. In our opinion, a special place in the above list is occupied by the Russian
crystallographer E. S. Fedorov, who discovered 17 types of symmetry, which
are found not only in crystal lattices, but also in many works of art by the
masters of the Ancient World and the Middle Ages. In connection with the
concept of symmetry, it is impossible not to mention the remarkable artist and
graphic artist Maurits Escher (1898-1972), who, thanks to the study of the
ornaments of Ancient Persia and fruitful collaboration with such outstanding
mathematicians as Harold Coxeter and Roger Penrose, embodied many laws of
symmetry in drawings and prints. In addition, it would be a great sin not to
recall the works of another outstanding geometer D. I. Tkach, who became
famous for creating a wonderful fractal called ‘Snowflakes of the Tkach-
Nifanin’, as well as a method for tiling a plane with tiles in the form of a gamma
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cross, colloquially referred to as “swastika” » [6—-9]. Meanwhile, it must be said
that the ‘Snowflakes of the Tkach-Nifanin’ is a curve that does not fill the entire
plane. The application of the fractal extension of the square to the filing of the
plane was not considered by D. I. Tkach.

Thus, the purpose of the study is to apply the fractal extension of the
regular pentagon to the filing of the plane with regular polygons whose angles
are multiples of 36 °, without overlaps and gaps.

Main part. Along with such wonderful fractals as the Koch Snowflake,
Sierpinski Carpet and the Hilbert Curve, the Durer Snowflake fractal, named
after the great artist and graphic artist of the Northern Renaissance Albrecht
Durer (1471-1528), is widely known among geometers. This name is due to the
fact that the figure, consisting of six regular pentagons and having the shape of a
regular pentagon with five wedges removed from it, was invented by Albrecht
Durer and first described by him in the treatise ‘Guide to measuring with a
compass and ruler ...”, published in 1525.

Here is an excerpt from the second book of the treatise: ‘Fifth, you can
combine pentagons in the following manner. First draw a pentagon and place
pentagons of the same size on each side. Then place five pentagons on their
sides, particularly along the two sides. This will result in the formation of five
narrow lozenges between them. Then add pentagons in the angles which will
have formed, so that these will touch the narrow lozenges with their corners.
You can continue in this manner as long as you desire’ [10, p. 99]. It is
remarkable that today we call the figure invented by Albrecht Direr as a fractal,
and the method of its construction is a fractal extension of a regular pentagon.

We will show the application of the figure, compiled by Albrecht Durer,
to the fractal division of a regular pentagon [11-18]. Let’s take a regular
pentagon and cut out 5 isosceles triangles from it, in which the height passes
through the middle of each side of the regular pentagon, and the ratio of the
larger side to the smaller side of the triangle is equal to the ‘golden section’. We
will get a group of 6 regular pentagons, in the center of which there is a regular
pentagon, and 5 regular pentagons adjoin each of its sides and form a figure
reminding a five-pointed star. From each regular pentagon included in the group
of 6 regular pentagons, we cut out 5 isosceles triangles similar to the isosceles
triangle introduced when constructing the first iteration of the fractal division of
the regular pentagon. Let’s repeat the above actions infinitely many times and
get a figure similar to ‘Durer’s Snowflake’.

Let’s show in Fig. 1 the opening four iterations of the fractal division of a
regular pentagon in a manner based on the figure invented by Albrecht Diirer.

Thus, the discovery of the fractal extension of a regular pentagon belongs
to Albrecht Direr. However, in his treatise ‘Guide to measuring with a compass
and a ruler ...” does not say a word about the fact that the fractal expansion of a
regular pentagon can completely fill the plane, if you invent a way by which you
can eliminate the gaps that form after each iteration of the fractal expansion of a
regular pentagon.
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Let us apply the fractal extension of a regular pentagon to tiling the plane
with regular polygons whose angles are multiples of 36 °, without overlaps or
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Fig. 1. The opening four iterations of the fractal division of a regular pentagon

Consider the development of a dodecahedron - a regular polyhedron, the
surface of which consists of twelve regular pentagons. Let’s represent the
deployment of the dodecahedron in the form of two groups of polygons,
consisting of 6 regular pentagons, one of which is located in the center of the
group, while the others are adjacent to its sides. However, the most remarkable
thing is that each group of 6 regular pentagons forms a figure that inscribes into
a regular pentagon. It follows that each group of 6 regular pentagons can be
considered as the result of a fractal expansion of the regular pentagon located in
its center. Moreover, if we attach the same figure to each side of the figure into
which a group of 6 regular pentagons inscribes, we will get another figure
similar to the original regular pentagon. Repeat the previous steps infinitely
many times and get a figure similar to the original regular pentagon and filling
the plane with gaps that can be filled with regular polygons whose angles are
multiples of 36 °

Thus, a regular pentagon has the remarkable property of forming a figure
similar to itself and taking up an area 6 times larger than its area. We will call
this property the fractal extension of a regular pentagon.

Let’s show in Fig. 2 group of regular polygons that fill the gaps that are
formed after four iterations of the fractal expansion of a regular pentagon.
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Fig. 2. Group of regular polygons that fill the gaps that are formed after four iterations of the
fractal expansion of a regular pentagon

Let us fill the gaps formed between the groups of 6 and 36 regular
pentagons with the figures shown in Fig. 2, and we get a figure reminding a
five-pointed snowflake. Let us pick out from the resulting figure a fragment that
inscribes into a regular pentagon and show it in Fig. 3.
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Fig. 3. The first variant of the parquet, forming with using the fractal expansion of a regular
pentagon
Note that if we inscribe into the figure shown in Fig. 3, a regular five-
pointed star with an angle of 36 < then we pick up four rhombuses with angles of
72 °and 108 °adjacent to it. It follows that the parquet obtained after the fourth
iteration and truncated by a regular pentagon is similar to a figure consisting of
four rhombuses with angles of 72°and 108 ° and one regular five-pointed star
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with an angle of 36 °and inscribed in a regular pentagon. This property of the
parquet shown in Fig. 3 is remarkable in that the group of polygons that fill the
gaps after the third iteration has been completed includes a figure also consisting
of four rhombuses with angles of 72 °and 108 °and one regular five-pointed star
with an angle of 36°

It follows that the choice of a regular five-pointed star with an angle of
36 ° to fill the gaps formed after each an iteration of the fractal expansion of a
regular pentagon, is not accidental and is predetermined by the geometric
properties of the figure shown in Fig. 3.

Let’s consider the types of symmetry that parquet constructed by means of
a fractal extension of a regular pentagon according to the first variant, has.

Obviously, the parquet shown in Fig. 3 has ten planes of symmetry;
consequently, it has a reflection symmetry group of the 10th order. In addition, it
has a rotational symmetry with an axis of symmetry of the 5th order. This means
that the parquet we are considering can be superposed with itself by rotating
around the axis of symmetry by an angle of 72° However, the transfer
symmetry of the parquet shown in Fig. 3 does not exist. It follows that it cannot
be superposed with itself by means of parallel translation in any direction given
by the translation axis.

Meanwhile, it is possible to obtain with the help of a fractal extension of a
regular pentagon, not only parquet with a reflection symmetry group of the 10th
order, but also parquet that does not have any plane of symmetry.

Let’s present the second variant of the parquet constructed with the help
of a fractal extension of a regular pentagon. This variant differs from the
previous one in that the gaps between regular pentagons formed after the first
iteration are filled not with rhombuses with angles of 36 °and 144 < but with the
corners of regular five-pointed stars with an angle of 36 <

Let’s show in Fig. 4 is the second variant of the parquet constructed by
means of a fractal extension of a regular pentagon and obtained after three
iterations.

Let’s consider the types of symmetry that parquet constructed by means of
a fractal extension of a regular pentagon according to the second variant, has.

Obviously, the parquet shown in Fig. 4 does not have any plane of
symmetry; consequently, it does not have a reflection symmetry group.
However, it has a rotational symmetry with a 5th order symmetry axis. This
means that the parquet we are considering can be superposed with itself by
rotating around the axis of symmetry by an angle of 72 °. At the same time, the
transfer symmetry of the parquet shown in Fig. 4 does not exist. It follows that it
cannot be superposed with itself by means of parallel translation in any direction
given by the translation axis.

Let’s present the third variant of the parquet constructed by means of a
fractal extension of a regular pentagon. This variant differs from the previous
one in that the step formed by the side of a regular pentagon, into which the
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figure obtained after the second iteration is inscribed, is eliminated by adding it
by a group of polygons consisting of a rhombus with angles 36°and 144° a
rhombus with angles 72 °and 108 °and a regular five-pointed star with an angle
of 36 °.
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Fig. 4. Second variant of the parquet constructed by means of a fractal extension of a regular
pentagon and obtained after three iterations

Let’s show in Fig. 5 is the third variant of the parquet constructed by
means of a fractal extension of a regular pentagon and obtained after three
iterations.

Let’s consider the types of symmetry that parquet constructed by means of
a fractal extension of a regular pentagon according to the third variant, has.

Obviously, the parquet shown in Fig.5 does not have any plane of
symmetry; consequently, it does not have a reflection symmetry group.
However, it has a rotational symmetry with a 5th order symmetry axis. This
means that the parquet we are considering can be superposed with itself by
rotating around the axis of symmetry by an angle of 72 ° At the same time, the
transfer symmetry of the parquet shown in Fig. 5 does not exist. It follows that it
cannot be superposed with itself by means of parallel translation in any direction
given by the translation axis.

Let us show that the figure shown in Fig. 5 is a fractal. Let’s inscribe in
the groups of polygons that fill the gaps between the groups of 30 regular five-
pointed stars formed after the third iteration, isosceles triangles, in which the
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ratio of the larger side to the smaller one is equal to the ‘golden section’. We get
a figure that has the shape of a regular pentagon with five wedges cut out of it. A
remarkable property of the resulting figure is that its shape is similar to the
group of 6 regular pentagons formed after the first iteration. It follows that the
figure shown in Fig. 5 is a fractal.
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Fig. 5. Third variant of the parquet constructed by means of a fractal extension of a regular
pentagon and obtained after three iterations

Consider the aesthetic qualities of the parquet presented in Fig. 3—Fig. 5.
Note that if the plane is filled with polygons using the fractal expansion of a
square, the gaps formed after each iteration can only be filled with squares that
have different sides. In our opinion, this somewhat reduces the artistic value of
the parquet constructed by means of a fractal expansion of the square.
Meanwhile, when tiling the plane using a fractal extension of a regular
pentagon, the gaps that form after each iteration are filled with figures that are a
combination of a rhombus with angles of 36 °and 144 °, a rhombus with angles
of 72 °and 108 , and a regular five-pointed star with an angle of 36 °. This, in our
opinion, gives parquets constructed by means of a fractal expansion of a regular
pentagon a higher artistic value compared to parquets constructed by means of a
fractal expansion of a square.

Conclusions and prospects. Thus, for the first time, a fractal extension of
a regular pentagon was applied to the tiling of a plane, the gaps of which are
eliminated by figures that are combinations of a rhombus with angles of 36 °and
144 < a rhombus with angles of 72°and 108 °, and a regular five-pointed star
with an angle of 36 ¢ It is shown that the variety of polygons used to eliminate
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gaps provides parquets in the form of a fractal extension of a regular pentagon
with a higher artistic value compared to parquets constructed by means of a
fractal extension of a square. It is presented a parquet variant, in which gaps
between regular pentagons, formed after the first iteration, are filled with
rhombuses with angles of 36 ©and 144 °. It is shown that the figures that fill the
gaps that appear after each iteration are similar to a rhombus with angles of 36 °
and 144 ¢ and the parquet obtained after the fourth iteration and truncated by a
regular pentagon is similar to a figure consisting of four rhombuses with angles
of 72°and 108 ° and one regular five-pointed star with an angle of 36 ° and
inscribed in a regular pentagon. Additionally, parquet variants are presented, in
which the gaps between regular pentagons, formed after the first iteration, are
filled with the corners of regular five-pointed stars with an angle of 36 °at the
top. We assume that our further research will be directed to the investigation of
a mosaic that has neither translation nor rotation symmetry and at the same time
maintain a law-governed nature in the arrangement of tiles.
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HanionanbHuil TeXHIYHUNA YHIBEPCUTET
«XapKiBCbKUH MOJITEXHIYHUI THCTUTYT»

ITAPKETH HA OCHOBI ®PAKTAJIBHOI'O PO3IIUPEHHA
IHPABUJIBHOI'O IPATUKYTHHUKA

Pozenanemo poseopmky oodexkaedpa - npasuibHo2o 6azamozpaHHuKa,
NOBEPXHA K020 CKIAOAEMbCA 3 O0B8AHAOYAMU NPABUNLHUX N AMUKYMHUKIS.
Vasimo poszeopmky oOoodexaedpa y 6ueiiodi 080x epyn 0a2amoxymHUuKis, wo
CKa0aromuvcs 3 6 NPABUNbHUX N'SMUKYIMHUKIE, 0OUH 3 AKUX PO3MAULO8YEMbCS 8
YeHmpi epynu, a iHuwi npuUMUKaroms 00 1o2o cmopin. QOHaxk Hau3HayHiue € me,
Wo KodxcHa epyna 3 6 NpasuibHUX n’sIMuKymHuKie ymeopioe @icypy, wo
BNUCYEMBCSL 8 NPABUILHULL N'SMUKYMHUK. 3810CU BUNIUBAE, WO KONCHY 2pYny 3 6
NPABUTLHUX N 'SAMUKYMHUKIE MONCHA PO32NA0AMU SIK pe3yiomam GpakmaibHo20
PO3WUPEHHS NPABUILHO20 N SAMUKYMHUKA, wo € y il yeumpi. binvuwe moeo,
SAKWO 00 KOJHCHOI CMOpOoHU ¢hicypu, 8 AKy enucyemvcs 2pyna 3 6 npasunvHux
n AMUKYMHUKIE, Npucmasumu maxy i @icypy, mo Ompumaemo uje OOH)
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Qicypy, nodioHy 00 BUXiOHO20 NPABUNLHO20 N AMUKymHuuka. Ilosmopumo
nonepeoHi Oii HeCKIHYeHHe YUCI0 paszie i ompumaemo ¢icypy, nodioHy 00
NPABUNILHO20 N 'SAMUKYIMHUKA.

Bnepwe  3acmocosano  ¢ppakmanvme  po3uiupeHHsi  NPABUTILHO20
1 SAMUKYMHUKA 00 3aMOWEeHHs NIOWUHI, NPONYCKU AKOI ycysaromscs gicypamu,
wo € komoinayiamu pomoba 3 kymamu 36°i 144 pomoba 3 kymamu 72°i 108 °
ma npasunvHoi n’amuxymuoi 3ipku. Ilokazano, wo piZHOMAHIMHICMY
0a2amoKymHuKis, Wo 3acmoco8yiomvCs 01 YCYHEHHS NpONnycKie, 3abesneyyc
napkemam y u2iiaoi opakmanbHo20 po3UUpeHHs NPABUIbHO20 N SAMUKYMHUKA
OibUL BUCOKY XYOOMNUCHIO YIHHICMb NOPIGHAHO 3 NAPKEMAaMU, CKIAOeHUMU 3d
0onomozor @pakmanvHo2o poswupenus keaopama. IIpeocmasneno eapianm
napkemy, y SAKO20 HNPONYCKU MINC NPABULLHUMU N SAMUKYMHUKAMU, U0
VMBOPIOIOMbCs NICIsA 6UKOHAHHS Nepuloi imepayii, 3ano8HI0I0OMbC poMoamu 3
kymamu 36 °i 144 ° Ilokazano nodibnicmo icyp, sKi 3anoeH00Ms NPONYCKu,
Wo 3’A61A10MbCs NICHS BUKOHAHHS KOJMCHOI imepayii, pomoy 3 xkymamu 36 ° i
144° i noodibnicme napxkemy, OompumMaHo2o nicis yemeepmoi imepayii ma
YCiueno2o npasuibHuUM N IMUKYMHUKOM, Qicypi, Wo CKIa0aemuvcs 3 Yomupbox
pombis 3 kymamu 72 °i 108 ° ma ooHici npasunvHoi n’amuxymHoi 3ipku 3 Kymom
36° i snucyemvcs 6 npasunvHuil n’smuxymuux. Kpim moeo, npedcmasneno
sapianmu napxemy, y AK020 NPONYCKU MINHC NPABUTLHUMU N SIMUKYMHUKAMU,
WO YMEOPIOIOMbCsl NICSl GUKOHAHHS Nepuiol imepayii, 3an08HI0I0MbCA KYmamu
NPABUNLHUX N SAMUKYMHUX 3IPOK 3 Kymom 36 ° npu 6epuiuni.

Knrwouosi  cnosa: mo3aixu, napkemu 3 pombOie ma NPABUTLHUX
1 AMUKYMHUX 3ipoK, (hpakmanbHe po3umupeHts NpasuilbHO20 N AMUKYMHUKA.
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