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OPTIMIZATION OF STRUCTURAL COMPUTATIONAL MODELS 

USING NEURAL NETWORKS: A SYSTEMATIC REVIEW OF 

CURRENT APPROACHES AND PROSPECTS 

Modern computational analysis and optimization of complex engineering 

structures using the finite element method (FEM) are often limited by high com-

putational costs. This paper presents a systematic review of current research on 

the application of artificial neural networks (ANNs) for creating fast surrogate 

models of FEM computations to overcome these limitations. The review provides 

a detailed analysis of various ANN architectures (including MLP, CNN, GNN, 

RNN, PINN), their training methodologies, and their effectiveness in accelerat-

ing the analysis of stress-strain states, dynamic behavior, nonlinear processes, 

and solving structural optimization problems (sizing, shape, topology). The lit-

erature analysis confirms the capability of ANN surrogates to significantly re-

duce computation time compared to traditional FEM, thereby opening new pos-

sibilities for engineering design. Concurrently, key challenges have been identi-

fied, related to the need for large datasets for training, ensuring model generali-

zation capabilities, and the interpretability of their results. The paper concludes 

with a discussion of unresolved problems and the identification of promising fu-

ture research directions in this dynamic field. 
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1. Introduction 

Modern design and analysis of engineering structures face increasing 

complexity in engineering tasks, driven by the need to account for nonlinear ma-

terial behavior, geometric nonlinearity, dynamic influences, and soil-structure 

interaction. The finite element method (FEM) is the standard tool for analyzing 

such models, providing high accuracy of results [12, 31]. However, despite its 

power, FEM has a significant drawback – high computational cost [7, 12, 14, 

31, 38]. This is particularly critical for tasks requiring multiple calculations, 

such as parametric studies, multi-objective optimization, uncertainty analysis, 

and modeling complex nonlinear processes [3, 6, 12, 15, 31, 33, 34]. These 

computational limitations substantially hinder engineers in their search for opti-

mal and innovative design solutions. 

In recent years, the rapid development of artificial intelligence (AI) 

methods, particularly machine learning (ML) and artificial neural networks 

(ANNs) [12, 20, 31], has opened new prospects for addressing this problem. 

One of the most promising directions is the creation of surrogate models (met-

amodels) [1, 12, 20, 31] that approximate computationally expensive FEM 

models. ANN surrogates, trained on data generated by FEM, can predict calcula-

tion results orders of magnitude faster [7, 14, 36], making it possible to efficient-

ly solve resource-intensive tasks. 

The aim of this paper is to conduct a comprehensive review and critical 

analysis of the current state of research on the application of artificial neural 

networks for accelerating engineering calculations, analysis, and optimization of 

computational models for engineering structures. To achieve this aim, the fol-

lowing objectives are set: 

• To systematize the main approaches to using ANNs as surrogate models 

in structural mechanics. 

• To analyze key ANN architectures (MLP, CNN, GNN, RNN, PINN) and 

the specifics of their application for various engineering tasks. 

• To review successful examples of using ANN surrogates for the analysis 

of stress-strain states, dynamics, nonlinear behavior, and structural opti-

mization. 

• To highlight the potential, advantages, and limitations of physics-

informed neural networks (PINNs). 

• To discuss the application of decomposition methods and ensemble ap-

proaches. 

• To analyze methods for evaluating the effectiveness of ANN surrogates. 

• To identify key unresolved problems, challenges, and determine promis-

ing directions for future research in this field. 

This review covers publications dedicated to the development and appli-

cation of ANN surrogates and is structured as follows: Section 2 is devoted to 

the concept of surrogate modeling. Section 3 details various ANN architectures. 

Sections 4, 5, and 6 focus on the application of ANNs for stress-strain state 

(SSS) analysis and dynamics, structural optimization, and the use of PINNs, re-
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spectively. Section 7 discusses decomposition methods and ensemble approach-

es. Criteria for evaluating ANN effectiveness are considered in Section 8. Sec-

tion 9 provides a critical analysis of the current state of research, discussing ma-

jor problems and future research directions. The paper concludes with general 

conclusions (Section 10). 

2. The Concept of Surrogate Modeling for Accelerating FEM Computations 

The idea of replacing complex computational models with simpler ap-

proximations is not new. However, it was the development of machine learning 

and, in particular, deep neural networks that provided a powerful impetus to the 

advancement of surrogate modeling in engineering. A surrogate model (meta-

model) is defined as a simplified model that mimics the behavior of a more 

complex, high-fidelity model (in our case, an FEM model) with significantly 

lower computational costs [1, 12, 20, 31]. 

The process of creating an ANN-based surrogate model typically includes 

the following stages [12, 31]: 

1. Data Generation: Performing a series of computations using the original 

FEM model with varying values of input parameters (e.g., geometric di-

mensions, material properties, applied loads, boundary conditions). These 

parameters define the “design space” or the domain in which the surrogate 

model is intended to operate. The results of these computations (dis-

placements, stresses, strains, natural frequencies, etc.) form the training 

dataset.  

2. ANN Architecture Selection: Defining the type and structure of the neu-

ral network (number of layers, neurons, types of activation functions) that 

will be used to approximate the input-output relationship of the FEM 

model. 

3. ANN Training: Adjusting the weight coefficients of the neural network 

using optimization algorithms (e.g., backpropagation and gradient de-

scent) to minimize the discrepancy between the ANN’s predictions and 

the data from the training dataset. 

4. Validation and Testing: Evaluating the accuracy of the trained ANN on 

data not used during training (the test dataset) to verify its generalization 

capability. 

A diagram illustrating the creation and use of an ANN surrogate for an 

FEM model is presented in Fig. 1. The primary driving force for using surrogate 

models is the acceleration of computations [7, 12, 14, 31, 38]. After training, an 

ANN surrogate can perform predictions (inference) extremely fast, often in near 

real-time. Reported speedups range from hundreds to thousands of times com-

pared to the original FEM computation [14, 36]. This is particularly important 

for tasks that require a large number of model evaluations, such as optimization, 

sensitivity analysis, and uncertainty quantification. 

A crucial aspect is the trade-off between accuracy and speed. Although 

ANN surrogates are fast, their accuracy depends on the quality and quantity of 
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training data, the chosen ANN architecture, and the complexity of the approxi-

mated relationship. Rigorous accuracy validation is a prerequisite for the reliable 

use of surrogate models in engineering practice [1, 12, 31]. Furthermore, the 

ANN training process itself, especially for complex models and large datasets, 

can be computationally intensive. 

While neural networks have been the most common tool for creating 

surrogate models in recent years, other machine learning methods are also 

employed, such as decision trees (and their ensembles – random forests, gradient 

boosting), support vector machines (SVM), and Gaussian processes (GPR) [1, 

12, 31]. The choice of a specific method depends on the specifics of the task and 

the characteristics of the data. 

 

Fig. 1. General process of creating and using an ANN surrogate for FEM models 
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3. Neural Network Architectures in Structural Mechanics Problems 

The choice of a neural network architecture is crucial for the successful 

creation of a surrogate model, as different architectures have varying capabilities 

for data processing and dependency detection. In the context of structural me-

chanics and FEM modeling, a variety of ANN architectures are employed: 

• Multi-Layer Perceptrons (MLPs) [1, 12, 31]: These are classic fully 

connected feedforward neural networks. They consist of an input layer, 

one or more hidden layers, and an output layer. MLPs are widely used for 

regression tasks where the input data is a vector of parameters (e.g., geo-

metric dimensions, loads, material properties), and the output is a vector 

or scalar values (e.g., maximum stresses, displacements, safety factors). 

Their advantage is the relative simplicity of implementation and training. 

However, they can be inefficient when working with data that has a spa-

tial or temporal structure (e.g., stress fields on a mesh, dynamic processes) 

because they do not account for local correlations or sequences. 

• Convolutional Neural Networks (CNNs) [2, 6, 37]: These networks are 

specifically designed for processing data with a grid-like structure, such 

as images. In structural mechanics, CNNs are used for: 

o Analyzing material microstructures and predicting their effective 

properties based on microstructure images. 

o Predicting stress or strain fields represented as “images” on a regu-

lar grid.  

o Identifying damage (e.g., cracks) in images of structures or analyz-

ing vibration monitoring data presented as spectrograms.  

o Topology optimization, where the material density in each element 

is considered a pixel in an image. However, the direct application 

of CNNs to unstructured FEM meshes can be inefficient due to the 

need to map mesh nodes to a regular grid, which leads to data spar-

sity and loss of information about connection topology. 

• Graph Neural Networks (GNNs) [5, 13]: This class of networks is de-

signed to work directly with data represented as graphs (nodes and edges). 

Since an FEM mesh is naturally represented as a graph (nodes are mesh 

nodes, edges are elements or connections between nodes), GNNs are a 

very promising architecture for surrogate modeling in mechanics. They 

can consider both node properties (coordinates, boundary conditions) and 

mesh topology. GNNs are used to predict displacement or stress fields di-

rectly on mesh nodes, avoiding inefficient conversion to a regular grid. 

They are applied in structural analysis and optimization, for example, to 

accelerate the size optimization of trusses. 

• Recurrent Neural Networks (RNNs), particularly Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) [30]: These net-

works have internal “memory,” allowing them to process sequences of da-

ta and consider dependencies on previous states. This makes them suitable 

for: 
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o Modeling the dynamic response of structures, where the response at 

the current time step depends on the previous history of loading and 

motion.  

o Modeling the history-dependent behavior of materials, particularly 

elasto-plasticity, where stresses depend not only on current strains 

but also on the loading path and accumulated plastic strains.  

o Structural Health Monitoring (SHM) tasks, where time-series data 

from sensors are analyzed to detect anomalies or damage. 

• Physics-Informed Neural Networks (PINNs) [4, 9, 15, 17, 22, 23, 24, 

34]: These represent an innovative approach where the physical laws gov-

erning the system (usually in the form of partial differential equations) are 

directly integrated into the neural network’s loss function during training. 

This allows for improved accuracy and generalization capability, especial-

ly with limited training data, and ensures the physical consistency of pre-

dictions. The potential and specific applications of PINNs in structural 

mechanics will be discussed in more detail in Section 6. 

• Ensemble Neural Networks [18]: This methodology involves the joint 

use of several separately trained neural networks, whose predictions are 

combined (e.g., by averaging) to obtain the final result. Such an approach 

often allows for higher accuracy, stability, and reliability of predictions 

compared to a single model, and also provides an opportunity to assess 

the uncertainty of the obtained results. The specifics of using ensemble 

approaches, particularly in conjunction with decomposition methods, will 

be discussed in more detail in Section 7. 

A comparative overview of these discussed architectures, detailing their 

typical input data, common applications in structural mechanics, primary 

strengths, and key weaknesses or challenges, is presented in Table 1. 

The choice of architecture depends on many factors: the type of input and 

output data, the presence of spatial or temporal dependencies, the need to ac-

count for physical laws, the volume of available data, and the desired trade-off 

between accuracy, speed, and model complexity. There is a trend towards using 

architectures that better match the data structure (GNNs for meshes) or integrate 

physical knowledge (PINNs), reflecting the aspiration to create more effective 

and reliable surrogate models. 

4. Application of ANNs for Analysis of Stress-Strain State and Dynamics of 

Structures 

One of the key tasks in structural mechanics is determining the stress-

strain state (SSS) of a structure under loads. Neural networks are actively used 

to create surrogate models that predict various aspects of SSS and dynamic be-

havior. 
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Table 1. Comparative Analysis of Neural Network Architectures for 

Surrogate Modeling of FEM in Structural Mechanics 

Architecture Typical Input 

Data 

Applications Strengths Weaknesses / 

Challenges 

MLP 

(Multi-Layer 

Perceptron) 

Parameter 

vectors 

Parameter-property 

mapping, simple 

regression tasks 

Simplicity of 

implementation 

and training 

Loss of 

spatial/temporal 

information, 

scalability 

CNN 

(Convolutional 

NN) 

Images, 

regular grids 

High accuracy for 

images/grids. 

Microstructure analysis, 

SSS fields as images, 

SHM (vibrations/images), 

TO. 

Efficient 

extraction of 

spatial features 

Inefficiency for 

unstructured 

meshes, requires a 

regular grid 

GNN 

(Graph NN) 

Graphs, FEM 

meshes 

Mesh-based analysis, truss 

optimization, SSS 

prediction. Promising for 

FEM data. 

Naturally 

handles 

unstructured 

meshes, 

considers 

topology 

Newer technology, 

potentially more 

complex to train 

RNN 

(Recurrent 

NN: LSTM, 

GRU) 

Sequences, 

time series 

Necessary for history-

dependent tasks. Dynamic 

analysis, plasticity (load 

history), SHM (time 

series). 

Modeling of 

temporal/path 

dependency 

Vanishing/exploding 

gradients problem, 

training time 

PINN 

(Physics-

Informed NN) 

Coordinates, 

parameters 

(+ equations) 

Improved accuracy with 

less data. Solving PDEs, 

inverse problems, 

modeling with limited 

data. 

Physical 

consistency, data 

efficiency, 

generalization 

Training complexity 

(loss balancing), 

precise satisfaction 

of BCs 

Ensemble 

NNs 

Predictions 

of multiple 

models 

Improved performance 

compared to individual 

models. Enhanced 

accuracy/reliability, 

uncertainty estimation, 

damage identification. 

Better accuracy 

and stability, UQ 

estimation 

Increased training 

and prediction costs 

 

Prediction of stress, strain, and displacement fields [7, 11, 16]: This is 

a fundamental task where ANNs are trained to map input parameters (geometry, 

material, loads) to output fields or SSS values. Research demonstrates the suc-

cessful application of ANNs for predicting: 

• Stress distribution (e.g., von Mises) and peak values in biomechanical ob-

jects (aorta) with high accuracy (errors less than 1%).  

• Stress and strain fields in plates with holes and other components.  

• SSS of various types of beams under different loading conditions.  

• Forces and displacements in truss structures.  
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• Effective mechanical properties and internal fields in composite materials. 

Various architectures are used, including MLPs, CNNs (if fields are treat-

ed as images), and GNNs (for direct work with meshes). 

Various architectures are used, including MLPs, CNNs (if the fields are 

considered as images), and GNNs (for working directly with the mesh). 

Analysis of dynamic response [8, 17, 29]: ANNs are applied to acceler-

ate the computation of the dynamic behavior of structures under time-varying 

loads. This includes predicting time histories of displacements, velocities, accel-

erations, as well as modal parameters (natural frequencies and mode shapes). 

Studies cover various types of structures, from simple mechanical systems to 

bridges and complex components like turbine bladed disks. Ensemble methods 

based on decision trees (XGBoost, Random Forest) or recurrent networks 

(LSTM, GRU) are often used to account for time dependency. 

Modeling of elasto-plastic behavior [15, 33, 34, 35]: The analysis of 

structures beyond the elastic limit is computationally complex due to nonlineari-

ty and load history dependence. ANNs offer an alternative to traditional incre-

mental FEM procedures. Recurrent architectures (GRU, LSTM) are naturally 

suited for modeling the path dependency of plasticity. Physics-informed neural 

networks (PINNs) that incorporate plastic flow equations or principles of strain 

decomposition show potential for improving data efficiency and extrapolation 

capabilities. Such models are being developed for various materials, including 

metals, soils (sands), and composites. 

Fracture mechanics and damage analysis [10, 19, 21, 22]: ANNs are 

used to predict damage evolution, determine stress intensity factors (SIFs) near 

cracks, model delamination in composites, and other aspects of fracture. These 

methods also form the basis for structural health monitoring (SHM) systems, 

where ANNs analyze sensor data to detect, locate, and classify damage. 

Contact mechanics [14, 36]: The computation of contact interaction be-

tween structural elements is another computationally expensive task. ANN sur-

rogates are successfully applied to approximate contact forces and moments, for 

example, in biomechanical simulations of joints, achieving significant speedups 

(up to 1000 times) while maintaining acceptable accuracy. 

Overall, neural networks demonstrate great versatility in modeling various 

phenomena in structural mechanics. However, the complexity of applying ANNs 

increases with the complexity of the process physics. While approaches for line-

ar elastic static problems are relatively well-established, dynamics, plasticity, or 

contact require more complex architectures (RNN, GNN, PINN) and specialized 

training methods, reflecting the need to adapt ML tools to the specifics of physi-

cal phenomena. 

5. Use of ANN Surrogates in Structural Optimization Problems 

Structural optimization – the search for the best design solution accord-

ing to specified criteria and constraints – is one of the most computationally de-

manding tasks in engineering [3, 6, 12, 31, 38]. Traditional optimization meth-
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ods combined with FEM often prove impractical due to the vast number of re-

quired computations. ANN surrogates offer a revolutionary approach by replac-

ing or accelerating FEM analysis within the optimization loop. 

Main areas of application: 

• Sizing Optimization: Determining the optimal cross-sectional areas of 

bar elements (trusses, frames) [5, 28, 38]. ANNs are trained to predict the 

SSS (stresses, displacements) for given cross-sections, allowing for rapid 

verification of strength and stiffness constraints in optimization algo-

rithms (e.g., genetic algorithms, differential evolution, particle swarm op-

timization). Both DNNs and GNNs are used. 

• Shape Optimization [6]: Finding the optimal configuration of external 

and internal boundaries of a structure (e.g., coordinates of truss nodes). 

ANNs can predict structural characteristics for different shapes or directly 

replace FEM in the iterations of a shape optimization algorithm. 

• Topology Optimization (TO) [6, 26, 27, 32, 37, 39, 40]: Determining the 

optimal material distribution within a given design domain to achieve 

maximum stiffness, minimum mass, or other objectives. This is one of the 

most complex optimization tasks, requiring thousands of FEM computa-

tions. ANNs and deep learning (DL) methods are applied here in several 

aspects: 

o Accelerating iterations: ANNs predict FEM results or sensitivity 

fields during intermediate TO iterations. 

o Non-iterative TO: ANNs are trained to directly map input condi-

tions (domain, loads, boundary conditions) to the final optimal to-

pology. 

o Metamodeling: ANNs act as surrogates for the objective function 

or constraints. 

o Dimensionality reduction: ANNs help reduce the number of de-

sign variables. 

o Post-processing: ANNs are used for smoothing or interpreting TO 

results. CNNs are a common architecture due to the similarity of 

density fields to images. However, creating universal and accurate 

ANNs for TO is a challenging task due to the high dimensionality 

of the problem and sensitivity to input conditions. 

• Other optimization tasks: ANN surrogates are also applied in more spe-

cific tasks, such as optimizing the durability of reinforced concrete struc-

tures considering corrosion processes [3], optimizing the placement of 

shear walls in buildings for wind load resistance [29], and optimizing the 

acoustic characteristics of structures [40]. 

Integration with optimizers [5, 28, 38]: ANN surrogates are successfully 

integrated with various classes of optimization algorithms: evolutionary (GA, 

DE), swarm-based (PSO, ABC), multi-objective (NSGA-II), and potentially 

with gradient-based methods if the ANN ensures differentiability. 
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The use of ANN surrogates fundamentally changes the approach to struc-

tural optimization. Removing the computational barrier of FEM allows optimiz-

ers to explore a significantly larger number of variants in the same amount of 

time. This makes it possible to solve more complex problems (e.g., TO, multi-

objective optimization), consider a larger number of design variables and con-

straints, and consequently, obtain more efficient, economical, and innovative 

structural solutions. Optimization ceases to be a final stage of checking a few 

variants and becomes an interactive tool for exploring the design space. 

6. Physics-Informed Neural Networks (PINNs) and Their Potential 

Standard ANN surrogates learn exclusively from data, ignoring the fun-

damental physical laws that govern the system’s behavior [4, 9, 15]. This can 

lead to several problems: the need for large volumes of training data, obtaining 

physically incorrect predictions (especially during extrapolation), and a limited 

ability to generalize to new, unseen conditions. Physics-Informed Neural Net-

works (PINNs) were proposed as an approach to overcome these shortcomings 

by integrating physical knowledge into the training process [4, 9, 15, 17, 22, 23, 

24, 34]. 

The core idea of PINNs: To incorporate information about the physical 

laws describing the system (usually in the form of partial differential equations – 

PDEs), as well as boundary and initial conditions, directly into the neural net-

work’s loss function [4, 9, 15]. The ANN learns not only to minimize the dis-

crepancy with available data (if any) but also to minimize the residual of the 

physical equations at certain points in the domain (collocation points). To com-

pute the derivatives included in the PDEs, the technique of automatic differen-

tiation is used, which is standard in many deep learning frameworks. 

Advantages of PINNs [4, 9, 15, 17, 22, 23, 24, 34]: 

• Data efficiency: PINNs can potentially achieve high accuracy with sig-

nificantly less training data compared to standard ANNs, as physical con-

straints act as a regularizer, guiding the learning towards physically plau-

sible solutions. 

• Physical consistency: Predictions from PINNs are more likely to be con-

sistent with fundamental physical principles. 

• Improved generalization and extrapolation: The inclusion of physics 

can enhance the model’s ability to predict system behavior under condi-

tions that extend beyond the training dataset. 

• Solving inverse problems: PINNs are naturally suited for inverse prob-

lems, where unknown model parameters (e.g., material properties) need to 

be determined based on partial observations of the system’s behavior. 

Application of PINNs in mechanics: PINNs are actively being re-

searched for a wide range of problems in continuum mechanics, including: 

• Solving forward problems (predicting displacement and stress fields) for 

linear elasticity [9, 24], nonlinear elasticity, and elasto-plasticity [15, 34].  

• Modeling structural dynamics [17].  
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• Analyzing plates and shells [9, 22].  

• Structural Health Monitoring (SHM) [22].  

• Creating surrogate models for optimization [4]. 

Challenges and limitations of PINNs [23, 24]: Despite their significant 

potential, the practical application of PINNs faces several difficulties: 

• Training complexity: The PINN loss function is a combination of several 

terms (data error, PDE residual, boundary condition errors), and their 

proper weighting and balancing is a non-trivial task that significantly af-

fects training convergence and accuracy. 

• Accuracy in satisfying boundary conditions: Ensuring the exact en-

forcement of boundary conditions (especially Dirichlet type) can be chal-

lenging when using “soft” constraints via the loss function. Methods for 

“hard” enforcement of BCs through ANN architecture modification are 

being developed. 

• Computational cost of training: Although PINNs can be data-efficient, 

their training can be more computationally expensive than training stand-

ard ANNs due to the need to compute derivatives and PDE residuals at 

many collocation points. 

• Scalability and complex geometries: Applying PINNs to complex three-

dimensional problems and domains with irregular boundaries is still an 

active area of research. To overcome these limitations, advanced architec-

tures using domain decomposition, such as XPINN [42], FBPINN [43], 

IDPINN [44], or hybrid approaches combining FEM and neural operators 

with domain decomposition [45], are being developed. Standard PINNs 

generate solutions in an infinite Euclidean domain, which does not corre-

spond to the finite boundaries of real structures. This motivates the devel-

opment of new architectures, such as Finite-PINN [23], which attempt to 

overcome these limitations by separating the approximation of stress and 

displacement fields and using a combined Euclidean-topological solution 

space. 

PINNs represent an important step towards creating hybrid models that 

combine the power of data-driven approaches with the reliability of physics-

based methods. They are not a universal replacement but rather a complement to 

existing methods, particularly valuable in situations with limited data or where 

physical consistency is critically important. Further development of PINNs, es-

pecially the creation of architectures adapted to the specifics of solid mechanics 

problems, is a key research direction. 

7. Decomposition Methods and Ensemble Approaches 

The complexity of real engineering structures often makes the direct ap-

plication of global surrogate models ineffective or inaccurate. Two approaches 

that help manage this complexity are decomposition methods and ensemble 

methods. 
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Decomposition and substructuring: The idea is to divide a complex sys-

tem into simpler subsystems (substructures, components, nodes), analyze these 

subsystems, and then combine the results to obtain the behavior of the entire 

system [25, 26]. This is a classic technique in FEM (e.g., the super-element 

method, modal synthesis method). In the context of machine learning and surro-

gate modeling, decomposition can be used for: 

• Training local models: Instead of one large ANN for the entire structure, 

smaller, specialized ANNs can be trained for individual types of compo-

nents or substructures [25]. For example, dynamic substructuring tech-

niques can be used to generate data and train ANNs that identify the dy-

namic properties of joints between components.  

• Multi-scale modeling and optimization: In hierarchical structures (e.g., 

lattices), both the microstructure (individual lattice elements) and the 

macrostructure can be modeled. Substructuring allows the behavior of the 

microstructure to be “condensed” into equivalent properties of a “super-

element” at the macro level, for which a surrogate model can then be built 

(e.g., using spline interpolation or ANNs) [26]. ML can also be used to 

link different scales or resolution levels in topology optimization.  

• Another important direction for using decomposition in conjunction with 

ANNs is domain decomposition methods, which are primarily used for 

solving partial differential equations. In this context, physics-informed 

neural networks (PINNs) have been extended to work with subdomains. 

Approaches such as XPINN [42], FBPINN [43], and IDPINN [44] divide 

a complex computational domain into smaller subdomains, train separate 

ANNs for each, and then ensure the continuity and consistency of the so-

lution at the subdomain interfaces using modified loss functions or archi-

tectural solutions. Similar ideas of hybridizing traditional numerical 

methods (FEM) and neural operators using domain decomposition are al-

so being actively researched [45]. 

Ensemble methods [18]: This approach involves using not one, but sev-

eral ANNs to solve a single problem, with the final result obtained by combining 

their individual predictions. Various strategies exist for creating an ensemble: 

• Bagging (Bootstrap Aggregating): Training identical models on differ-

ent data subsamples (e.g., Random Forest for decision trees). 

• Boosting: Sequentially training models where each subsequent model fo-

cuses on the errors of the previous one (e.g., AdaBoost, XGBoost). 

• Stacking: Training a meta-model that combines the predictions of base 

models. 

• Simple averaging: Averaging the predictions of several models trained 

independently (possibly with different initializations or on slightly differ-

ent data). 

The main advantages of ensembles [18] include: 

• Increased accuracy: An ensemble often yields a more accurate predic-

tion than any single constituent model. 
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• Enhanced reliability and stability: The risk of obtaining a poor result 

due to an unfortunate choice of a single model or its overfitting is 

reduced. 

• Uncertainty estimation: The discrepancy between the predictions of en-

semble members can be used as a measure of prediction uncertainty. 

In structural mechanics and engineering analysis tasks, ensemble neural 

networks are used for several key purposes: 

• Increasing the accuracy and reliability of surrogate model 

predictions: Averaging or combining the results of several ANNs, trained 

independently or on different data/features, often allows for more accurate 

and stable predictions of structural characteristics (e.g., stress fields, dis-

placements, dynamic response) compared to individual models [12, 31]. 

• Uncertainty Quantification (UQ): Analyzing the discrepancies between 

the predictions of different models in an ensemble allows for an assess-

ment of the confidence level in the result obtained from the surrogate 

model, which is important for risk assessment [12, 31]. 

• Damage Identification (SHM): In structural health monitoring systems, 

ensembles can effectively combine information from various sources 

(e.g., different sensors or modal characteristics) for more reliable damage 

detection and classification [18]. 

Synergy of decomposition and ensembles [18, 25, 26]: Combining de-

composition strategies with specialized local models and ensemble methods for 

integrating their predictions appears promising for enhancing the accuracy and 

reliability of analyzing complex systems. A key scientific challenge in such ap-

proaches is the development of effective methods for integrating local predic-

tions. The development of such methods can draw on the experience of both 

classical substructuring [25, 26] and modern achievements in domain decompo-

sition methods using machine learning [42, 43, 44, 45], as well as on general 

principles of applying ANNs in mechanics [46-50]. 

8. Performance Evaluation: Computational Speedup and Prediction 

Accuracy 

For ANN surrogates to be reliably used in engineering practice, their per-

formance must be thoroughly evaluated based on two key criteria: speed and 

accuracy. 

Computational Speedup: This is the primary motivation for using surro-

gate models. Speedup is usually measured as the ratio of the computation time 

using the original FEM model to the prediction time using the trained ANN sur-

rogate [7, 12, 14, 31, 38]. The literature reports significant speedup factors, 

reaching orders of magnitude: from tens and hundreds of times to thousands of 

times and more [14, 36]. Such acceleration is critically important for optimiza-

tion tasks, uncertainty analysis, and real-time applications. 

Prediction Accuracy: Accuracy determines how well the predictions of 

an ANN surrogate correspond to the results obtained using the original FEM 
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model (which is considered the “reference” or “ground truth”) [1, 7, 9, 12, 14, 

31]. Various regression metrics are used to assess accuracy: 

• Coefficient of determination (R-squared, R²) [1, 7, 9, 14]: Shows the 

proportion of the variance in the output variable that is explained by the 

model. Values close to 1 indicate high accuracy. Many studies achieve R² 

values > 0.9 or even > 0.98. 

• Mean Absolute Error (MAE) [1, 7, 9, 14]: The average absolute devia-

tion of predictions from true values. 

• Root Mean Squared Error (RMSE): The square root of the average of 

squared deviations; gives more weight to large errors. 

• Mean Absolute Percentage Error (MAPE): Relative error expressed as 

a percentage. Reported achievements include MAPE < 10%. 

• Normalized errors (NMAE, NRMSE): Errors normalized by the range 

or mean of the variable, allowing for accuracy comparison across differ-

ent quantities. Errors of less than 1% are achieved. 

Validation Strategies: For an objective assessment of accuracy, it is nec-

essary to use data that was not involved in model training. The standard ap-

proach is to divide the available dataset into three parts: training (for adjusting 

ANN weights), validation (for tuning model hyperparameters, e.g., number of 

layers, neurons, learning rate), and testing (for final evaluation of the trained 

model’s performance) [12, 31]. It is important that the test set is representative 

of the tasks the model will solve in practice. Cross-validation can be used to in-

crease the reliability of the assessment. 

Challenges in Performance Evaluation [12, 23, 31]: 

• Interpolation vs. Extrapolation: Most models perform well within the 

range of parameters represented in the training data (interpolation), but 

their accuracy can drop sharply outside this range (extrapolation). As-

sessing extrapolation capability is important but often overlooked. 

• Generalization: The ability of a model to perform correctly on data that 

differs somewhat from the training data (e.g., different geometry, different 

boundary conditions) is critical for practical application. PINNs and 

GNNs are often positioned as having better generalization capabilities. 

• Lack of standard benchmarks: Comparing the effectiveness of different 

approaches proposed in various publications is complicated by the ab-

sence of standardized test problems and datasets. 

Therefore, while computational speedup using ANN surrogates is demon-

strated quite easily, the key factor for their implementation is ensuring and thor-

oughly verifying accuracy. It is necessary to clearly define validation conditions 

(interpolation or extrapolation) and use adequate metrics to build confidence in 

the results obtained with ANNs within the engineering community. 
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9. Discussion: Current State, Key Challenges, and Future Research 

Directions 

The conducted literature review demonstrates significant progress and 

great potential in the application of neural network surrogate models in structur-

al mechanics and optimization. ANNs are successfully used to accelerate SSS 

calculations, dynamics, nonlinear behavior, as well as in solving complex opti-

mization problems that were previously intractable due to computational limita-

tions. A trend is observed towards the development of increasingly specialized 

architectures (GNN, PINN) and training methodologies aimed at enhancing the 

accuracy, reliability, and physical soundness of models. 

Despite these successes, the widespread adoption of neural network sur-

rogates in engineering practice is still hindered by a number of interconnected 

challenges that require in-depth analysis and innovative solutions: 

• Data dependency and quality of training datasets: Although ANNs can 

learn from data, the effectiveness of this learning critically depends on the 

volume, representativeness, and quality of the training datasets [12, 17, 

31]. Generating a sufficient number of high-fidelity FEM computations to 

cover the entire multidimensional space of design parameters is itself a 

laborious and computationally expensive process. This raises questions 

about optimal Design of Experiments for data generation and the devel-

opment of methods effective with limited data. 

• Limited generalization and extrapolation capabilities: Neural net-

works, being essentially powerful interpolation tools, often exhibit unpre-

dictable behavior and low accuracy when attempting to extrapolate be-

yond the domain covered by the training data [12, 23, 31]. This signifi-

cantly limits their reliability in real-world engineering tasks where struc-

tures may experience unforeseen loads or have parameters outside the 

training range. Ensuring robustness and the ability of models to perform 

reasoned extrapolation remains a key challenge. 

• Training, tuning, and interpretability issues: The training process, es-

pecially for deep and complex ANN architectures, is often non-trivial, re-

quiring considerable expertise in selecting the architecture, loss function, 

optimizer, and tuning numerous hyperparameters [12, 31]. Moreover, 

ANNs often function as “black boxes,” which complicates understanding 

the physical basis of their predictions and causes justified caution among 

engineers for whom understanding model behavior and the reasons for ob-

taining particular results is critically important. 

• Difficulties in modeling complex physical behavior: Although progress 

has been made in modeling nonlinear processes, the accurate and reliable 

reproduction of highly nonlinear, history-dependent phenomena (like 

plasticity [15, 33, 34]) or multi-scale physical phenomena (like fracture or 

contact interaction [28]) remains a challenging task [30, 35]. This requires 

the development of specialized ANN architectures, possibly with deeper 

integration of physical principles than is currently implemented in PINNs. 
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• Sensitivity to changes in geometry, mesh topology, and scalability: 

Many standard ANN architectures (especially MLPs and CNNs) adapt 

poorly to changes in structural geometry or FEM mesh topology, requir-

ing retraining or complex data transformation procedures [30]. Although 

GNNs partially address this issue, the question of effectively scaling de-

veloped approaches to very large, real-world engineering systems with 

millions of degrees of freedom remains open, both in terms of data gener-

ation and model training and usage [12, 31]. 

• Integration into engineering workflows and uncertainty quantifica-

tion: For the practical application of ANN surrogates, their seamless inte-

gration into existing CAD/CAE systems and engineering workflows is 

necessary [12, 31, 36]. Furthermore, it is critically important not only to 

obtain a point prediction but also to assess its reliability and uncertainty 

(UQ) [3, 12, 18], which allows for making informed engineering deci-

sions considering potential risks. Existing UQ methods for ANNs are of-

ten computationally complex or provide only approximate estimates. 

The analysis of these challenges shows that, despite considerable enthusi-

asm, the path to the ubiquitous use of ANNs in engineering practice requires not 

only the improvement of machine learning algorithms themselves but also the 

development of comprehensive methodologies that consider the specifics of en-

gineering tasks, and the requirements for reliability and interpretability of 

results. 

Promising future research directions include: 

• Developing hybrid models that effectively combine the strengths of FEM 

and ANNs, particularly further improving PINNs and their variants for 

solid mechanics problems, including domain decomposition methods [42, 

43, 44, 45].  

• In-depth research of graph neural networks (GNNs) for the analysis and 

optimization of structures with complex geometries and on unstructured 

meshes.  

• Developing transfer and active learning methods to reduce dependence on 

large data volumes and enhance model adaptability.  

• Creating reliable and computationally efficient methods for uncertainty 

quantification for ANN surrogates.  

• Developing approaches that increase the interpretability of ANNs and cre-

ating standardized benchmarks for comparing the effectiveness of differ-

ent methods. 

• Particular attention should be given to researching methodologies that 

combine the decomposition of complex structural systems into typical el-

ements/subproblems with the training of specialized ANN surrogates for 

these elements and the subsequent integration of their predictions using 

ensemble or hierarchical approaches. Such an approach could potentially 

offer greater flexibility, scalability, and accuracy for analyzing heteroge-

neous systems compared to global surrogates, representing an important 
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step towards creating effective tools for next-generation engineering de-

sign. 

10. Conclusions 

The application of artificial neural networks for creating surrogate models 

of FEM computations demonstrates revolutionary potential for overcoming the 

problem of high computational costs in structural mechanics and engineering 

design. The conducted literature review indicates significant progress in the de-

velopment and application of ANN surrogates for substantially accelerating the 

analysis of stress-strain states, dynamic responses, and nonlinear behavior of 

structures, as well as for effectively solving problems in size, shape, and topolo-

gy optimization. 

Various ANN architectures have been investigated and successfully ap-

plied, from classic MLPs to more complex CNNs, GNNs, RNNs, and physics-

informed PINNs, each offering advantages for specific classes of problems. The 

use of ANNs for multi-variant calculations within optimization loops is particu-

larly promising, allowing for the exploration of a much broader design space 

and the discovery of more efficient and innovative structural designs. 

Despite the obvious advantages, a number of fundamental and practical 

challenges remain. These include the need for large representative datasets for 

training, ensuring the models’ ability to generalize and extrapolate to new condi-

tions, the complexity of hyperparameter tuning, and the interpretation of “black 

box” ANN results. Modeling complex physics, dependence on changes in geom-

etry and mesh, as well as scaling to large real-world problems, continue to be 

active areas of research. 

Future development in this field is likely to be associated with the creation 

of hybrid physics-informed models, the development of more robust and data-

efficient ANN architectures, and methods that ensure the interpretability and re-

liable uncertainty assessment of predictions. The development of comprehensive 

methodologies that combine the advantages of decomposition, specialized local 

ANN surrogates, and ensemble approaches is one of the promising paths for 

creating computationally efficient and accurate tools for the analysis and optimi-

zation of complex engineering structures, which will open new horizons for en-

gineering design. 
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ОПТИМІЗАЦІЯ РОЗРАХУНКОВИХ МОДЕЛЕЙ СПОРУД 

З ВИКОРИСТАННЯМ НЕЙРОННИХ МЕРЕЖ: СИСТЕМАТИЧНИЙ 

ОГЛЯД СУЧАСНИХ ПІДХОДІВ ТА ПЕРСПЕКТИВ 

Сучасний розрахунковий аналіз та оптимізація складних будівельних 

конструкцій за допомогою методу скінченних елементів (МСЕ) часто об-

межені високою обчислювальною вартістю. Ця стаття представляє сис-

тематичний огляд сучасних досліджень щодо застосування штучних ней-

ронних мереж (НМ) для створення швидких сурогатних моделей МСЕ-

розрахунків з метою подолання цих обмежень. В огляді детально аналізу-

ються різноманітні архітектури НМ (зокрема, MLP, CNN, GNN, RNN, 

PINN), методики їх навчання та ефективність використання для приско-

рення аналізу напружено-деформованого стану, динамічної поведінки, не-

лінійних процесів та вирішення задач оптимізації конструкцій (розмірів, 

форми, топології). Аналіз літератури підтверджує здатність НМ-

сурогатів значно скорочувати час розрахунків порівняно з традиційним 

МСЕ, відкриваючи нові можливості для інженерного проектування. Разом 

з тим, ідентифіковано ключові виклики, пов’язані з потребою у великих 

масивах даних для навчання, забезпеченням здатності моделей до узагаль-

нення та інтерпретованістю їхніх результатів. Стаття завершується 

обговоренням невирішених проблем та визначенням перспективних напря-

мків майбутніх досліджень у цій динамічній галузі. 
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